Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues

نویسنده

  • Patrik L. Ferrari
چکیده

We consider the polynuclear growth model (PNG) in 1+1 dimension with flat initial condition and no extra constraints. Through the Robinson-Schensted-Knuth (RSK) construction, one obtains the multilayer PNG model, which consists of a stack of non-intersecting lines, the top one being the PNG height. The statistics of the lines is translation invariant and at a fixed position the lines define a point process. We prove that for large times the edge of this point process, suitably scaled, has a limit. This limit is a Pfaffian point process and identical to the one obtained from the edge scaling of Gaussian orthogonal ensemble (GOE) of random matrices. Our results give further insight to the universality structure within the KPZ class of 1 + 1 dimensional growth models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bulk and edge spectra of critical values of smooth isotropic processes

We study the behaviour of the critical values of smooth isotropic processes, which we consider as a generalization of the eigenvalues of random matrices. Isotropic processes on R, invariant under rigid motions of R, have a large symmetry group as do the classical random matrix ensembles, with the GOE ensemble being the most relevant. We discuss in what ways the critical values of an isotropic p...

متن کامل

Polynuclear growth model, GOE and random matrix with deterministic source

We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model w...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Discrete Polynuclear Growth and Determinantal Processes

We consider a discrete polynuclear growth (PNG) process and prove a functional limit theorem for its convergence to the Airy process. This generalizes previous results by Prähofer and Spohn. The result enables us to express the F1 GOE Tracy-Widom distribution in terms of the Airy process. We also show some results, and give a conjecture, about the transversal fluctuations in a point to line las...

متن کامل

Fluctuations of a one-dimensional polynuclear growth model in a half space

We consider the multi-point equal time height fluctuations of a one-dimensional polynuclear growth model in a half space. For special values of the nucleation rate at the origin, the multi-layer version of the model is reduced to a determinantal process, for which the asymptotics can be analyzed. In the scaling limit, the fluctuations near the origin are shown to be equivalent to those of the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004